Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.12.426042

ABSTRACT

A new coronavirus was recently discovered and named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the absence of specific therapeutic and prophylactic agents, the virus has infected almost hundred million people, of whom nearly two million have died from the viral disease COVID-19. The ongoing COVID-19 pandemic is a global threat requiring new therapeutic strategies. Among them, antiviral studies based on natural molecules are a promising approach. The superfamily of phospholipases A2 (PLA2s) consists of a large number of members that catalyze the hydrolysis of phospholipids at a specific position. Here we show that secreted PLA2s from the venom of various snakes protect to varying degrees the Vero E6 cells widely used for the replication of viruses with evident cytopathic action, from SARS-CoV-2 infection PLA2s showed low cytotoxicity to Vero E6 cells and the high antiviral activity against SARS-CoV-2 with IC50 values ranged from 0.06 to 7.71 ug/ml. Dimeric PLA2 HDP-2 from the viper Vipera nikolskii, as well as its catalytic and inhibitory subunits, had potent virucidal (neutralizing) activity against SARS-CoV-2. Inactivation of the enzymatic activity of the catalytic subunit of dimeric PLA2 led to a significant decrease in antiviral activity. In addition, dimeric PLA2 inhibited cell-cell fusion mediated by SARS-CoV-2 spike glycoprotein. These results suggest that snake PLA2s, in particular dimeric ones, are promising candidates for the development of antiviral drugs that target lipid bilayers of the viral envelope and may be good tools to study the interaction of viruses with host cell membranes.


Subject(s)
Coronavirus Infections , COVID-19 , Drug-Related Side Effects and Adverse Reactions
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.12.425991

ABSTRACT

The exact mechanism of coronavirus replication and transcription is not fully understood; however, a hallmark of coronavirus transcription is the generation of negative-sense RNA intermediates that serve as the templates for the synthesis of positive-sense genomic RNA (gRNA) and an array of subgenomic mRNAs (sgRNAs) encompassing sequences arising from discontinuous transcription. Existing PCR-based diagnostic assays for SAR-CoV-2 are qualitative or semi-quantitative and do not provide the resolution needed to assess the complex transcription dynamics of SARS-CoV-2 over the course of infection. We developed and validated a novel panel of specially designed SARS-CoV-2 ddPCR-based assays to map the viral transcription profile. Application of these assays to clinically relevant samples will enhance our understanding of SARS-CoV-2 replication and transcription and may also inform the development of improved diagnostic tools and therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL